
Part 3

Interactive graphics,
media, and gaming

Interactive media APIs such as Canvas, SVG, Video, and WebGL are making

graphics creation, media players, and games available without plugins. You’ve

probably used these technologies with YouTube’s HTML5 video player and/or

Google Maps WebGL version. Some companies such as Ludei (CocoonJS) and

Goo Technologies (Goo Engine) are investing in such tech for game engines.

Once you’ve completed this section, you’ll be fully equipped to start rolling your

own interactive applications without plugins.

 How do HTML5’s interactive media APIs stand up to RIA (Rich Internet Applica-

tion) plugins such as Flash, Unity, and Silverlight? These systems are much more

mature, but they’re limited in mobile distribution by requiring a native app or some

form of conversion. You can write a game in HTML5, for example, and it magically

becomes accessible in-browser on mobile and desktop. (Please note that this is ideal

and not quite how it works yet.) There are many limitations on mobile for HTML5

APIs and you should check caniuse.com for more details. Some people argue that

RIAs provide advanced encryption security over web apps and they’re right. On the

other hand, demand is rapidly increasing for non-plugin-based solutions.

 How important are the interactive media APIs? To front-end and some mobile

developers they’re becoming vital tools. Many companies are hiring specifically

for HTML5 specialists in Canvas. One of us worked at a shop where they moved

most of their Flash work to Canvas development. In fact they’re still hiring more

Canvas developers because they can’t supply all of the requests they get from cli-

ents. What we’re trying to say is, these skills will make you more in demand and

increase your long-term value.

Chapter 6 at a glance

Look for this icon throughout the chapter to quickly locate the topics outlined

in this table.

Topic Description, methods, and so on Page

API overview Fundamentals for drawing with the Canvas API

■ Canvas context and origins

■ getContext()
166

169

Drawing assets Creating static Canvas objects with visual output

■ App’s general structure

■ requestAnimationFrame()
■ ctx.drawImage()
■ ctx.fillRect()
■ ctx.createLinearGradient()
■ ctx.arc() for circles

■ Paths via moveTo() and lineTo()

■ ctx.arcTo() for round corners

170

173

174

175

177

178

179

179

Animate/overlap Making assets interactive and detecting overlap

■ Moving your visual assets

■ Overlap detection

■ Keyboard and mouse input

■ Touch input

182

183

185

187

Game mechanics Game features such as counters and screens

■ Score and level output

■ Progressive level enhancement

■ Welcome and Game Over screens

■ HTML5 game libraries

190

191

193

195

Core API

165

2D Canvas: low-level,
2D graphics rendering

For many years, developers used Adobe’s Flash to create highly interactive web

applications. Sadly, Flash wasn’t ready when the mobile market explosion for

smartphones occurred. Those dark days without an alternative have ended

because of HTML5’s Canvas API. It allows you to create 2D shapes in a single DOM

element without a plug-in. An application written with Canvas is distributable to

multiple platforms and through frameworks like PhoneGap.com. Although sim-

ple to use, Canvas lets you do complex work, like emulating medical training

procedures, creating interactive lobbying presentations, and even building edu-

cation applications.

This chapter covers

■ Canvas basics

■ Shape, path, and text creation

■ Creating animation

■ Overlap detection

■ HTML5 Canvas games from scratch

http://html5inaction.com/app/ch6/
http://html5inaction.com/app/ch6/

166 CHAPTER 6 2D Canvas: low-level, 2D graphics rendering

In this chapter, you’ll explore the Canvas API by implementing a simple engine pat-

tern to maintain and draw graphics. After that, you’ll create and animate unique

shapes. When you’ve finished, you’ll be able to apply both of those exercises to creat-

ing full-length animations, interactive data, or drawing applications. Here, though,

you’ll use the principles for the true reason of all technology: creating games!

You’ll create a simple ball-and-paddle–based game called Canvas Ricochet, which

includes animated elements, collision detection, and keyboard/mouse/touch con-

trols. After you assemble those components, you’ll take everything a step further and

create a fully polished product, which includes a score counter, progressively increas-

ing difficulty, and an opening/closing screen. Adding polish greatly helps to monetize

a game’s worth, resulting in a better return on investment.

 After completing this chapter on 2D Canvas, you’ll have learned all the necessary

tools to build your own Canvas applications from scratch. First up is the Canvas context.

6.1 Canvas basics

No matter what type of Canvas application you build, your first two steps will involve

the Canvas context: setting it and generating it. Without a context, you won’t be able

to draw anything. Then, you’ll need to verify that the current browser can actually sup-

port Canvas.

6.1.1 Setting the Canvas context

Before working with Canvas, you must choose a set of drawing tools from the API via

JavaScript (also known as setting the context). As with most HTML5, you must use

Can I use Canvas for drawing graphs and infographics?

One common misconception about Canvas is that it’s good for creating graphs and

infographics. Although you could use it to visualize simple information, the Canvas

API is better for complex animations and interactivity. If you want simple visuals or

animation, check out SVG in chapter 7. It’s for creating logos, graphs, and infograph-

ics, and it comes with many built-in features Canvas lacks, such as animation, resiz-

ability, and CSS support.

What makes this tutorial special

We know you can find tutorials similar to Canvas Ricochet online, but our lesson is

far more in-depth. Here are a few of the topics covered in this chapter that go beyond

what you find in free tutorials:

■ Advanced Canvas API usage (gradients, paths, arcs, and more)

■ Progressive level enhancement with scorekeeping

■ Implementing a Canvas design pattern into a fully functional application

Core API

http://www.manning.com/crowther2/
http://blog.nihilogic.dk/2009/02/html5-canvas-cheat-sheet.html
http://www.whatwg.org/specs/web-apps/current-work/multipage/the-canvas-element.html
https://developer.mozilla.org/en-US/docs/JavaScript/Guide/Working_with_Objects

167Canvas basics

JavaScript to program with the API. The most commonly used context draws a 2D

plane where everything is flat. Figure 6.1 features a robust drawing application known

as Sketchpad, which utilizes Canvas’s built-in drawing tools. We’ll have you set the con-

text for this chapter’s game right after we explain more about what it does.

 An alternative to the 2D context is a set of 3D drawing tools. Although 3D context

allows for advanced applications, not all browsers support it. With 3D graphics and

JavaScript, you can create interactive 3D applications such as the music video shown in

figure 6.2 (more about 3D when we get to WebGL in chapter 9).

Because 2D is great for programming simple games, we’ll teach you how to use Canvas

as we guide you through building Canvas Ricochet with the 2D Canvas context,

JavaScript, and HTML. As you’ll soon see, a majority of the creation process involves

Canvas: a product of Apple’s iOS

Canvas isn’t the W3C’s brainchild for HTML5. It originally came in 2004 as part of the

Mac OS X WebKit by Apple. Two years later, Gecko and Opera browsers adopted it. Pop-

ularity since then has significantly grown, and Canvas is now an official HTML5 API.

Figure 6.1 Sketchpad (http://mudcu.be/sketchpad/) is a robust drawing application that features

gradients, textures, swatches, shape creation, and more. You’ll be using a lot of these drawing features

during your game’s creation process.

http://mudcu.be/sketchpad/
http://mudcu.be/sketchpad/
http://mudcu.be/sketchpad/
http://mudcu.be/sketchpad/

168 CHAPTER 6 2D Canvas: low-level, 2D graphics rendering

accessing a set of drawing tools via JavaScript, so you can send an object to the

CanvasRenderingContext2D interface object. Although CanvasRenderingContext2D

interface object sounds long and fancy, it really means accessing Canvas to draw. Each

newly drawn piece sits on top of any previous drawings.

PREREQUISITE Before you begin, download the book’s complementary files
from http://www.manning.com/crowther2/. Also, test-drive the game at
http://html5inaction.com/app/ch6/ to see all of its cool features in action.

Each drawing you create is layered on a simple graph system inside the <canvas> tag,

as shown in figure 6.3. At first glance, the graph appears to be a normal Cartesian

Figure 6.2 “3 Dreams of

Black” is an interactive music

video created exclusively for

Google Chrome. You can

experience Chris Milk’s

masterpiece at http://ro.me

and download the source code!

(0, 0)
x

y

Figure 6.3 The invisible

Cartesian graph where Canvas

drawings are created. Notice

that the x and y coordinates

begin in the top left and the

y-axis increments downward.

http://www.manning.com/crowther2/
http://www.manning.com/crowther2/
http://html5inaction.com/app/ch6/
http://ro.me

169Canvas basics

graph. Upon further investigation, you’ll notice that the starting point is located in

the top-left corner. Another difference is that the y-axis increases while moving down-

ward, instead of incrementing upward.

6.1.2 Generating a Canvas context

Although you get the context with JavaScript, you have to pull it out of the <canvas> ele-

ment’s DOM data.

PREPARING THE CANVAS FOR YOUR GAME

Start by opening a text editor to create a document called index.html. Inside your

document place a <canvas> tag in the <body> with id, width, and height attributes, as

shown in listing 6.1. Failure to declare this size information via HTML, CSS, or

JavaScript will result in Canvas receiving a default width and height from the browser.

Note that you can place whatever you want inside the <canvas> tag, because its con-

tents are thrown out when rendered. Create an empty game.js file and include it right

next to index.html.

<!DOCTYPE html>

<html>

<head>

 <title>Canvas Ricochet</title>
</head>

<body style="text-align: center">
 <canvas id="canvas" width="408" height="250">
 Your browser shall not pass! Download Google Chrome to view this.
 </canvas>

 <script type="text/javascript" src="game.js"></script>
</body>

</html>

VERIFYING BROWSER SUPPORT

Refreshing your browser will remove the nested text inside your <canvas> element.

When a Canvas element is successfully rendered, all the content inside is removed,

which makes it a great place to include content or messages for browsers that can’t

support it.

 You can access the Canvas API’s context from <canvas> and store it in a variable.

Code used to render your Canvas would look something like the following two lines;

you’ll implement it in the next section.

var canvas = document.getElementById('canvas');

var context = canvas.getContext('2d');

Canvas’s context element is useful for defining 2D drawing and you can use it for fea-

ture detection. Simply encapsulate the context variable in an if statement, and it will

Listing 6.1 index.html—Default Canvas HTML

When the browser successfully
loads the Canvas element, it

replaces all content inside.

Create this file now,
because you’ll be
placing all your
game logic in it later.

Core API

http://mng.bz/h9v9
http://creativejs.com/resources/requestanimationframe/
http://creativejs.com/resources/requestanimationframe/

170 CHAPTER 6 2D Canvas: low-level, 2D graphics rendering

check to make sure the Canvas variable has a getContext method. Here’s what basic

feature detection looks like with Canvas.

var canvas = document.getElementById('canvas');

if (canvas.getContext && canvas.getContext('2d'))
 var ctx = canvas.getContext('2d');

This checks both getContext and getContext('2d') because some mobile browsers

return true for the getContext test but false for the getContext('2d') test.

NOTE IE7 and IE8 will crash when using Canvas API commands unless you use
explorercanvas (http://code.google.com/p/explorercanvas/wiki/Instructions).
To use it, click the download tab, unzip the files, put excanvas.js in your root
directory, and add a script element loading excanvas.js inside a conditional
comment targeting IE. IE9 gives great support, and IE10’s support is looking
quite solid. Our disclaimer for explorercanvas is that with it you can do simple
animations, but more advanced support (such as that needed for the Canvas
Ricochet game tutorial) might not work.

Now that you have your index.html file set up and you understand exactly what the

Canvas context is, it’s time to create your first game, Canvas Ricochet.

6.2 Creating a Canvas game

Your first Canvas game, shown in figure 6.4, will make use of overlap detection, anima-

tion, keyboard/mouse/touch controls, and some polish.

 Although overlap detection and advanced animation might sound scary, no prior

knowledge is necessary, and we’ll walk you through each step of the way.

Canvas API 4 3.5 9 10.5 4

Figure 6.4 Canvas Ricochet’s objective is

to bounce a ball via a paddle to break

bricks. When the ball goes out of bounds,

the game shuts down. You can play the

game now at http://html5inaction.com/

app/ch6/ and download all the files needed

to complete your own Canvas Ricochet

game from www.manning.com/crowther2/.

www.manning.com/crowther2/
http://html5inaction.com/app/ch6/
http://html5inaction.com/app/ch6/
http://code.google.com/p/explorercanvas/wiki/Instructions

171Creating a Canvas game

In this section, you’ll create the main game engine and the game’s visual assets in

7 steps:

■ Step 1: Create the main engine components.

■ Step 2: Create HTML5-optimized animation.

■ Step 3: Display a background image.

■ Step 4: Calculate the width and height of rectangular bricks.

■ Step 5: Color the bricks.

■ Step 6: Create the game ball.

■ Step 7: Create the paddle.

6.2.1 Creating the main engine components

You’re going to place all proceeding JavaScript listings you write into a single self-

executing function. Why would we have you do this? Because it allows you to keep

variable names from appearing in the global scope and prevents conflicts with code

from other files.

STEP 1: CREATE THE MAIN ENGINE COMPONENTS

Fill game.js with the code in listing 6.2. The listing has you create a Canvas engine

object. Instead of declaring variables and functions, the object uses methods (the

equivalent of functions) and properties (act like variables). For example, you can

access the number of bricks on a page by declaring var bricks = {count: 20, row: 3,

col: 2 }; and then calling bricks.count to get the current value. For more informa-

tion on working with JavaScript objects, please see https://developer.mozilla.org/en-

US/docs/JavaScript/Guide/Working_with_Objects.

In this section, you’ll learn

■ How to use the Canvas API to dynamically draw squares and circles, then shade

them with specific coloring techniques (solid colors and gradients)

■ How to use basic visual programming concepts that can be applied to other

languages

■ How to draw an image via the Canvas API

Optional HTML5 Canvas companions

Before you proceed, we strongly recommend that you download and print nihilogic’s

HTML5 Canvas Cheat Sheet for reference: http://blog.nihilogic.dk/2009/02/html5-

canvas-cheat-sheet.html. Another great companion is WHATWG’s (Web Hypertext

Application Technology Working Group) Canvas element document at http://www

.whatwg.org/specs/web-apps/current-work/multipage/the-canvas-element.html. It pro-

vides detailed documentation about the Canvas element’s inner workings, meant

more for browser vendors but very useful for the curious developer.

Core API

http://www.whatwg.org/specs/web-apps/current-work/multipage/the-canvas-element.html
http://www.whatwg.org/specs/web-apps/current-work/multipage/the-canvas-element.html
http://blog.nihilogic.dk/2009/02/html5-canvas-cheat-sheet.html
http://blog.nihilogic.dk/2009/02/html5-canvas-cheat-sheet.html
https://developer.mozilla.org/en-US/docs/JavaScript/Guide/Working_with_Objects
https://developer.mozilla.org/en-US/docs/JavaScript/Guide/Working_with_Objects

172 CHAPTER 6 2D Canvas: low-level, 2D graphics rendering

(function () {

 var ctx = null;

 var Game = {
 canvas: document.getElementById('canvas'),

 setup: function() {
 if (this.canvas.getContext) {
 ctx = this.canvas.getContext('2d');

 this.width = this.canvas.width;
 this.height = this.canvas.height;

 this.init();
 Ctrl.init();
 }
 },

 animate: function() {},

 init: function() {
 Background.init();
 Ball.init();
 Paddle.init();
 Bricks.init();

 this.animate();
 },

 draw: function() {
 ctx.clearRect(0, 0, this.width, this.height);

 Background.draw();
 Bricks.draw();
 Paddle.draw();
 Ball.draw();
 }
 };

 var Background = {
 init: function() {},
 draw: function() {}
 };

 var Bricks = {
 init: function() {},
 draw: function() {}
 };

 var Ball = {
 init: function() {},
 draw: function() {}
 };

 var Paddle = {
 init: function() {},
 draw: function() {}

Listing 6.2 game.js—Default JavaScript

Place all proceeding JavaScript code listings inside
this self-executing function. It prevents your
variables from leaking into the global scope.An empty

variable
that your

2D context
will be

dumped
into.

Cache width and height
from the Canvas element.

init() houses all
of your object
instantiations.

draw() handles all the
logic to update and
draw your objects.

This clears the
Canvas drawing
board, so previously
drawn shapes are
removed each time
it’s updated.

Proceeding objects will contain all of
the game’s visual assets. As of now,
they’re placeholders to prevent your
game from crashing when it runs.

173Creating a Canvas game

 };

 var Ctrl = {
 init: function() {}
 };

 window.onload = function() {
 Game.setup();
 };
}());

You’ll notice that you’ve wrapped your Game.setup() code in window.onload. It

makes the browser wait to fire setup until index.html has completely loaded. Running

Canvas code too soon could result in crashing if essential assets (such as libraries)

haven’t loaded yet.

STEP 2: CREATE HTML5-OPTIMIZED ANIMATION

Before you start drawing, you’ll need to set up animation. But there’s a catch: Can-

vas relies on JavaScript timers because animation isn’t built in. To create animation

you must use a timer to constantly draw shapes. Normally you’d use JavaScript’s

setInterval(), but that won’t provide users with an optimal experience. setInter-

val() is designed for running equations or carrying out DOM manipulation, not pro-

cessor-intensive animation loops.

 In response, browser vendors created a JavaScript function, requestAnimation-

Frame(), that interprets the number of frames to display for a user’s computer

(https://developer.mozilla.org/en/DOM/window.requestAnimationFrame). The bad

news is that requestAnimationFrame() isn’t supported by all major browsers. The

good news is that Paul Irish created a polyfill that lets you use it anyway (http://

mng.bz/h9v9).

Integrate animations into your engine with the following listing by adding window

.requestAnimFrame directly above your Game object. Then add to your existing Game

object with a new method that uses requestAnimFrame().

Controlling fluctuating frames

requestAnimationFrame() is inconsistent in how many frames it shows per sec-

ond. It dynamically adjusts to what a computer can handle with a goal of 60 fps, so

it might return anywhere from 1 to 60 fps. If it’s returning less than 60 fps, it can

cause movement logic such as x += 1 to tear, become choppy, or randomly speed up

and slow down because of frame rates fluctuating. If you need your code to run at a

consistent speed, you have two options.

Option 1 is to put logic updates into setInterval() and drawing logic into request-
AnimationFrame(). The second and best option is to create a delta and multiply all

of your movement values by it (example x += 1 * delta); that way, animation is always

consistent (more info on rolling your own delta is available at http://creativejs.com/

resources/requestanimationframe/).

window.onload will delay your
code from running until everything
else has completely loaded.

Core API

https://developer.mozilla.org/en/DOM/window.requestAnimationFrame
http:// mng.bz/h9v9
http:// mng.bz/h9v9
http://creativejs.com/resources/requestanimationframe/
http://creativejs.com/resources/requestanimationframe/

174 CHAPTER 6 2D Canvas: low-level, 2D graphics rendering

window.requestAnimFrame = (function() {
 return window.requestAnimationFrame ||
 window.webkitRequestAnimationFrame ||
 window.mozRequestAnimationFrame ||
 window.oRequestAnimationFrame ||
 window.msRequestAnimationFrame ||
 function(callback) {
 window.setTimeout(callback, 1000 / 60);
 };
})();

var Game = {
 animate: function() {
 Game.play = requestAnimFrame(Game.animate);
 Game.draw();
 }
};

NOTE You should be aware of two important points related to listing 6.3.
First, if a code example repeats an object property/method declaration, then
you need to replace the existing code. For example, new methods inside var
Game = should be added onto your existing Game object. Worried about modi-
fying objects while you follow along? We’ll let you know whenever you need to
modify or replace objects. Second, instead of using a clear rectangle to wipe a
Canvas clean during animation, some developers set a new width to clear
the Canvas drawing area. Although changing the width sounds more clever
than creating clear rectangles, it causes instability in browsers. We recom-
mend using clear rectangles to erase all previously drawn frames instead of
fiddling with the width constantly.

STEP 3: DISPLAY A BACKGROUND IMAGE

Replace your background object code with the following code so it displays an image.

You must get background.jpg from Manning’s source files and place it in your root

directory for the listing to work.

var Background = {
 init: function() {
 this.ready = false;
 this.img = new Image();
 this.img.src = 'background.jpg';

 this.img.onload = function() {
 Background.ready = true;
 };
 },

 draw: function() {
 if (this.ready) {

Listing 6.3 game.js—Animating Canvas Ricochet

Listing 6.4 game.js—Default JavaScript

Animate constantly refers
back to itself when called.

Because animate() is a self-
referring function that fires
outside the Game object, you
must refer to Game instead
of referring to “this.”

Make sure all of your properties/methods end with
a comma unless they are the last method. In that
case, there should be no comma at the end.

Core API

Canvas requires an Image object to
draw the background. Image.src uses
the filename of the background image
you retrieved from Manning’s website.

http://www.w3.org/TR/2011/CR-touch-events-20111215/

175Creating a Canvas game

 ctx.drawImage(this.img, 0, 0);
 }
 }
};

Now that you’ve set up the main engine components, the next step is to create the

game’s visual assets. If you have no experience creating visual assets with a language

like C++, you might find some of the following listings difficult. Once you’ve com-

pleted the listings, you’ll understand basic concepts that you can use for 2D program-

ming in multiple languages.

6.2.2 Creating dynamic rectangles

Bricks are the easiest shape to create because they’re rectangles. Rectangles in Canvas

are clear, filled, or outlined and accept four parameters, as shown in figure 6.5. The

first two parameters determine the spawning position (x and y on a graph). Although

the current viewing space shows only positive x and y coordinates, you can also

spawn shapes at negative values. The next two parameters specify the width and

height in pixels.

STEP 4: CALCULATE THE WIDTH OF AND HEIGHT OF RECTANGULAR BRICKS

To get the width for each brick, you’ll need to do some calculations. Five bricks need

to be placed on a row with 2px gaps between each brick (4 gaps x 2px = 8px). These

bricks need to fit inside the <canvas> width of 408px that was placed in your HTML

markup earlier. Removing the gaps from the total width (408px – 8px), five bricks

need to fit inside 400px. Each brick therefore needs to be 80px (400px / 5 bricks =

80px). Following all our math for the bricks can be frustrating; we’ve included a visual

diagram (figure 6.6) to help you out.

 You could place bricks by rewriting a basic shape command over and over and

over. Instead, create a two-dimensional array as shown in the following listing to hold

each brick’s row and column. To lay down the bricks, loop through the array data and

place each according to its row and column. Modify the Bricks object with the code

in listing 6.5.

Core API

context.fillRect(20, 20, 100, 100);

X Y Width Height

Figure 6.5 Creating a rectangle requires four different parameters. The

current figure would create a 100 x 100 pixel square at the 20-pixel x and

y position. Currently, rectangles are the only universally supported basic

shape component in Canvas. To create items that are more complex, you’ll

need to use paths or images.

176 CHAPTER 6 2D Canvas: low-level, 2D graphics rendering

var Bricks = {
 gap: 2,
 col: 5,
 w: 80,
 h: 15,

 init: function() {
 this.row = 3;
 this.total = 0;

 this.count = [this.row];
 for (var i = this.row; i--;) {
 this.count[i] = [this.col];
 }
 },

 draw: function() {
 var i, j;

 for (i = this.row; i--;) {
 for (j = this.col; j--;) {
 if (this.count[i][j] !== false) {
 ctx.fillStyle = this.gradient(i);
 ctx.fillRect(this.x(j), this.y(i), this.w, this.h);
 }
 }
 }
 },

 x: function(row) {
 return (row * this.w) + (row * this.gap);
 },

Listing 6.5 game.js—Brick array creation

(0, 0)
x

y

2px gaps

5 bricks

Canvas width of 408px

Figure 6.6 Include four gaps at 2px each. You’ll need to subtract 8px from the <canvas>
width, leaving 400px. Distribute the remaining width to each brick, leaving 80px for each

(400px / 5 bricks = 80px).

Array of bricks based
on your brick.row
and brick.col data.

Stored bricks are drawn
here unless they’re set
to false, which means
they’re destroyed.

When you create color code in the
next listing, this will automatically

color your brick with a pretty
gradient based on its row.

177Creating a Canvas game

 y: function(col) {
 return (col * this.h) + (col * this.gap);
 }
};

STEP 5: COLOR THE BRICKS

Your bricks are set up, but you need to skin them so they’re visible. You’ll create a cached

linear gradient (colors that change between two defined points on a Cartesian graph)

with the following listing by coloring each brick based on its row via a switch statement.

Add your new gradient and makeGradient methods to the existing Bricks object.

var Bricks = {
 gradient: function(row) {
 switch(row) {
 case 0:
 return this.gradientPurple ?
 this.gradientPurple :
 this.gradientPurple =
 this.makeGradient(row, '#bd06f9', '#9604c7');
 case 1:
 return this.gradientRed ?
 this.gradientRed :
 this.gradientRed =
 this.makeGradient(row, '#F9064A', '#c7043b');
 case 2:
 return this.gradientGreen ?
 this.gradientGreen :
 this.gradientGreen =
 this.makeGradient(row, '#05fa15', '#04c711');
 default:
 return this.gradientOrange ?
 this.gradientOrange :
 this.gradientOrange =
 this.makeGradient(row, '#faa105', '#c77f04');
 }
 },

 makeGradient: function(row, color1, color2) {
 var y = this.y(row);
 var grad = ctx.createLinearGradient(0, y, 0, y + this.h);

No box model?

If you've worked with CSS, you’re probably familiar with the box model, which deter-

mines layout and positioning of HTML elements. Canvas doesn’t use it, meaning

shapes won’t grow and shrink to the proportion of their container; instead, they over-

flow without stopping. A line of text that’s too long, for example, won’t automatically

wrap to fit the <canvas> tag’s width and height. Also, Canvas doesn’t use CSS; you

must manually program all visual output in JavaScript.

Listing 6.6 game.js—Coloring bricks

Core API

Row 1,
purple.

If a cached gradient exists,
use it; if not, create a new

gradient. Makes use of a
ternary operator instead

of an if statement.

Row 2, red.

Row 3, green.

Row 4 or
greater, orange.

Creates a new
linear gradient
at a specific
location.

178 CHAPTER 6 2D Canvas: low-level, 2D graphics rendering

 grad.addColorStop(0, color1);
 grad.addColorStop(1, color2);

 return grad;
 }
};

Your bricks are ready to go; now let’s work on the ball.

6.2.3 Creating arcs and circles

You’ll create the ball using arc(x, y, radius, startAngle, endAngle), as illustrated

in figure 6.7, which is what you use to create circular shapes. Unlike the rectangles you

drew, which started from the top left, arc()’s starting point is in the center. You’ll give

the arc() a radius in pixels, then a startAngle and endAngle, which creates the cir-

cle. StartAngle is usually 0pi, whereas the endAngle is 2pi because it’s the circumfer-

ence of a circle (using only 1pi will create half a circle).

STEP 6: CREATE THE BALL

Now, with your new knowledge of arcs, you can create the ball using the next listing.

Modify the existing Ball object with the following code.

var Ball = {
 r: 10,

 init: function() {
 this.x = 120;
 this.y = 120;
 this.sx = 2;
 this.sy = -2;
 },

 draw: function() {
 this.edges();
 this.collide();
 this.move();

 ctx.beginPath();
 ctx.arc(this.x, this.y, this.r, 0, 2 * Math.PI);

Listing 6.7 game.js—Ball creation

Makes the gradient start at
color1 and end at color2.

Core API

context.arc(7, 22, 20, 0, 2 * Math.PI);

X Y Radius Angle Start Angle End

Figure 6.7 An arc with these parameters creates a shape at 7, 22 (x, y)

on a graph. Because the angle starts from 0 and goes to 2pi, it creates a

full circle. If you were to make the end angle 1pi, it would produce half

a circle.

Ball’s radius, which can increase or
decrease its size if you adjust this number.

init() contains only values that need to be reset if the game
is currently running (more on that later). Values like radius
(r) are kept separate because they don’t need to change.

this.sx increments the speed on the
x-axis, whereas this.sy increments
the speed on the y-axis. These
properties will be integrated later
when you add movement.

179Creating a Canvas game

 ctx.closePath();
 ctx.fillStyle = '#eee';
 ctx.fill();
 },

 edges: function() {},
 collide: function() {},
 move: function() {}
};

Next up, you’ll work on the paddle.

6.2.4 Using paths to create complex shapes

Creating the game’s paddle requires a Canvas path composed of multiple arcs and

lines. This single step of creating a paddle is pretty complex, so we’ve broken it down

into another step-wise process, all of which will happen within a single listing:

1 Start drawing a path with ctx.beginPath().

2 Use ctx.moveTo(x, y) to move the path without drawing on the Canvas (optional).

3 Draw lines as needed with ctx.lineTo(x, y).

4 Close the currently drawn path via ctx.closePath() to prevent abnormal draw-

ing behavior.

5 Use steps 2 and 3 as often as you want.

6 Set the color of the line with ctx.strokeStyle or ctx.fillStyle; the game

uses the browser’s default color if you don’t manually set it.

7 Fill in the path by using ctx.stroke().

In addition to the lineTo command, you’ll use arcTo(x1, y1, x2, y2, radius) to cre-

ate curves for your paddle.

NOTE arcTo() is slightly unstable in Opera v12.01. It won’t break your game,
but it will cause the paddle you’re creating to look like surreal art. IE9

requires you to declare an extra lineTo() between the arcTo()s; otherwise,
the paddle will look like a bunch of randomly placed curves. Normally you
can use arcTo() without lineTo()s between them, and the arcs will form a
full shape without crashing.

STEP 7: CREATE THE PADDLE

To complete all of these tasks and create a paddle, follow the next listing, which com-

bines four arcs into a pill shape and colors that shape with a gradient. Add the follow-

ing methods and properties to your existing Paddle object.

var Paddle = {
 w: 90,
 h: 20,
 r: 9,

Listing 6.8 game.js—Paddle creation

Placeholder methods for
configuring your ball’s
movement logic later.

Core API

Core API

180 CHAPTER 6 2D Canvas: low-level, 2D graphics rendering

 init: function() {
 this.x = 100;
 this.y = 210;
 this.speed = 4;
 },

 draw: function() {
 this.move();

 ctx.beginPath();
 ctx.moveTo(this.x, this.y);
 ctx.arcTo(this.x + this.w, this.y,
 this.x + this.w, this.y + this.r, this.r);
 ctx.lineTo(this.x + this.w, this.y + this.h - this.r);
 ctx.arcTo(this.x + this.w, this.y + this.h,
 this.x + this.w - this.r, this.y + this.h, this.r);
 ctx.lineTo(this.x + this.r, this.y + this.h);
 ctx.arcTo(this.x, this.y + this.h,
 this.x, this.y + this.h - this.r, this.r);
 ctx.lineTo(this.x, this.y + this.r);
 ctx.arcTo(this.x, this.y, this.x + this.r, this.y, this.r);
 ctx.closePath();

 ctx.fillStyle = this.gradient();
 ctx.fill();
 },

 move: function() {},

 gradient: function() {
 if (this.gradientCache) {
 return this.gradientCache;
 }

 this.gradientCache = ctx.createLinearGradient(this.x, this.y,
 this.x, this.y + 20);
 this.gradientCache.addColorStop(0, '#eee');
 this.gradientCache.addColorStop(1, '#999');

 return this.gradientCache;
 }
};

PROGRESS CHECK!

With all the static assets in place, double-check that your game looks like what you see

in figure 6.8. If it doesn’t, make sure your browser is up to date. If that fails, make sure

that your Game object is set up correctly; then proceed to tackle each object that isn’t

outputting correctly.

 So far, you’ve created all the core graphic assets of Canvas Ricochet. Because nothing

moves, the game is as useless as a rod without a reel. In the next section, we’ll teach

you how to bring your game’s static design to life!

Useful for determining your
ball’s speed, which you’ll
configure in a later listing.

Set paddle’s spawn
origin by moving it
before drawing arcs.

Closing paths can prevent
buggy behavior such as graphic
tears and vanishing objects.

Used at a later time to
configure movement.

181Breathing life into Canvas elements

6.3 Breathing life into Canvas elements

Your game looks cool right now, but it doesn’t do anything. Using several different

techniques, we’ll show you how to animate game elements, detect collisions, and

move the paddle with a keyboard/mouse/touch.

This section’s work will happen in two groups of steps.

Let’s get started.

6.3.1 Animating game elements

Diving into the first set of tasks, let’s make the paddle move horizontally. After that,

you’ll make the ball move diagonally.

In this section, you’ll learn

■ How to dynamically move objects around the screen

■ How to create responses between overlapping objects

■ How to prevent moving objects from leaving the <canvas> boundaries

■ How to remove basic objects (bricks) from the game

■ How to create keyboard, mouse, and touch controls from scratch

■ How to trigger a Game Over

Group 1—Making the application interactive. Group 2—Capturing user input.

■ Step 1: Move the paddle horizontally.

■ Step 2: Make the ball move.

■ Step 3: Enable edge detection for the paddle and ball.

■ Step 4: Enable collision detection.

■ Step 5: Remove hit bricks.

■ Step 1: Create a keyboard listener.

■ Step 2: Add mouse control.

■ Step 3: Add touch support.

■ Step 4: Add control info via HTML.

Figure 6.8 Using previous code

snippets, you created a ball, paddle,

and bricks with gradients. After

refreshing your browser, the current

result should look like this.

182 CHAPTER 6 2D Canvas: low-level, 2D graphics rendering

STEP 1: MOVE THE PADDLE HORIZONTALLY

To make the paddle move, adjust the x-axis each time it’s drawn. Making x positive will

draw the paddle forward (pushed to the right), a negative value will pull it back

(pushed to the left). Earlier you created a Paddle.speed property with a value of 4 in

your init(). Just fill the empty Paddle.move() method with the following snippet,

and your paddle will move:

var Paddle = {
 move: function() {
 this.x += this.speed;
 }
};

Now, refresh your page. Oh no! The paddle swims off into oblivion because it lacks a

movement limiter. The only way to keep your paddle from vanishing is to integrate

overlap detection, which you’ll deal with in the next section. First though, you need to

get the ball moving.

STEP 2: MAKE THE BALL MOVE

Making the ball move is almost identical to moving the paddle. Use the Ball.sx and

Ball.sy properties you declared earlier to modify the ball’s x and y coordinates.

Replace Ball.move() with the following snippet:

var Ball = {
 move: function() {
 this.x += this.sx;
 this.y += this.sy;
 }
};

If you’d like to try refreshing, you’ll notice that the ball and paddle fly off the screen

and disappear. Although their disappearance may leave you depressed and lonely,

never fear! You’ll soon retrieve them by integrating overlap detection.

Canvas data processing

When creating Canvas drawings through JavaScript, the browser re-creates all graph-

ical assets from scratch because it uses bitmap technology. Bitmap graphics are cre-

ated by storing graphical data in an organized array. When the data is processed by

a computer, Canvas spits out pixels to create an image. This means that Canvas has

a memory span shorter than that of a goldfish, so it redraws everything constantly.

If you’re wondering why Canvas infinitely re-creates its images, you aren’t alone.

Many people have asked why Apple used a bitmap-based system when a solution

exists that doesn’t require everything to be constantly redrawn (Scalable Vector

Graphics, or SVG). Canvas, though, is currently stomping SVG in popularity. One could

explain Canvas’s triumph through the lack of awareness and knowledge developers

have of SVG.

Core API

183Breathing life into Canvas elements

6.3.2 Detecting overlap

In simple 2D games, you create collisions by testing for object overlap. These checks

occur each time the interval refreshes and draws an updated set of objects. If an object

is overlapping another, some logic that causes a response is activated. For instance, if a

ball and paddle overlap, then one object should repel the other.

You’ll start building collisions detection into Canvas Ricochet by keeping objects con-

tained inside the play area. After taming objects, you’ll focus on using the paddle to

bounce the ball at the bricks. Once the ball is bouncing back, you’ll configure ball-to-

brick overlap logic. When that’s done, you’ll create rules to determine when the game

shuts down. Let’s get started.

STEP 3: ENABLE EDGE DETECTION FOR THE PADDLE AND BALL

To prevent your ball and paddle from flying offscreen, check them against the <canvas>

DOM element’s width and height stored in Game.width and Game.height.

 Go to your Paddle.move() method and replace its contents with the following

snippet, which checks to see if the paddle has a positive x coordinate and is within the

play area’s width. If it is, then Paddle.x updates as normal; otherwise, it stops halfway

into the right edge.

var Paddle = {
 move: function() {
 if (this.x > -(this.w / 2) &&
 this.x < Game.width - (this.w / 2))
 this.x += this.speed;
 }
};

To stop the ball from dropping out of gameplay, reverse the direction if the ball is

overlapping the <canvas>’s edge. In addition to reversing the ball, you must place it

inside the play area; otherwise, it will stick to edges at higher movement speeds. Use

the code in the next listing to make the ball repel off the gameplay area’s sides by

replacing edges()in your Ball object.

var Ball = {
 edges: function() {
 if (this.y < 1) {

What about real game physics?

Sad to say, we’re teaching you only how to detect overlapping shapes, which isn’t

real physics integration. Physics in programming is a complicated subject that we

could easily fill a hundred books with and still have more to write about. If you’re inter-

ested in learning how to make games more lifelike, please see Glenn Fiedler’s robust

article on game physics at http://gafferongames.com/game-physics/.

Listing 6.9 game.js—Ball edge detection

Core API

Top edge of your
game’s container.

http://gafferongames.com/game-physics/

184 CHAPTER 6 2D Canvas: low-level, 2D graphics rendering

 this.y = 1;
 this.sy = -this.sy;
 } else if (this.y > Game.height) {
 this.sy = this.sx = 0;
 this.y = this.x = 1000;
 Screen.gameover();
 canvas.addEventListener('click', Game.restartGame, false);
 return;
 }

 if (this.x < 1) {
 this.x = 1;
 this.sx = -this.sx;
 } else if (this.x > Game.width) {
 this.x = Game.width - 1;
 this.sx = -this.sx;
 }
 }
};

STEP 4: ENABLE COLLISION DETECTION

With the ball ricocheting, you’ll need to use the paddle to deflect it toward the bricks.

Because the ball changes direction on impact and the paddle stays stationary, you’ll

put your deflection logic inside a Ball.collide() method, as in the following snip-

pet. When the ball’s x and y coordinates overlap the paddle, you’ll make the ball

bounce in the opposite direction by reversing the y-axis direction. Replace the Ball

object’s collide() with the following listing.

var Ball = {
 collide: function() {
 if (this.x >= Paddle.x &&
 this.x <= (Paddle.x + Paddle.w) &&
 this.y >= Paddle.y &&
 this.y <= (Paddle.y + Paddle.h)) {
 this.sx = 7 * ((this.x - (Paddle.x + Paddle.w / 2)) / Paddle.w);
 this.sy = -this.sy;
 }
 }
};

STEP 5: REMOVE HIT BRICKS

When the ball hits a brick, that brick needs to disappear. Replace Brick.draw() with

the code in the next listing, which tests if the ball is overlapping when a brick is drawn.

If so, it reverses the ball’s y-axis and sets the brick’s array data to false to remove it

from gameplay. Use the following listing to add a new Bricks.collide() method.

var Bricks = {
 draw: function() {
 var i, j;

Listing 6.10 game.js—Ball touching paddle

Listing 6.11 game.js—Removing bricks

Bottom
edge.

Hides the ball and
triggers a Game
Over with some

methods and
objects created in

a later section.

Left
edge.

Right
edge.

Modifies the x coordinate for the
ball when it bounces back, based

on where it hits the paddle.

185Breathing life into Canvas elements

 for (i = this.row; i--;) {
 for (j = this.col; j--;) {
 if (this.count[i][j] !== false) {
 if (Ball.x >= this.x(j) &&
 Ball.x <= (this.x(j) + this.w) &&
 Ball.y >= this.y(i) &&
 Ball.y <= (this.y(i) + this.h)) {
 this.collide(i, j);
 continue;
 }

 ctx.fillStyle = this.gradient(i);
 ctx.fillRect(this.x(j), this.y(i), this.w, this.h);
 }
 }
 }

 if (this.total === (this.row * this.col)) {
 Game.levelUp();
 }
 },

 collide: function(i, j) {
 this.count[i][j] = false;
 Ball.sy = -Ball.sy;
 }
};

Now that the paddle can deflect the ball back toward the bricks, players have the abil-

ity to defend themselves. Well, not exactly. You still haven’t given players the ability to

control the paddle. Whipping up a little bit of window event magic, we’ll give you some

simple code recipes to create keyboard, mouse, and touch functionality—the second

group of tasks in this section.

6.3.3 Creating keyboard, mouse, and touch controls

To create an interactive game experience, keyboard, mouse, and/or touch input is

required. Although you could build controller detection into your Game object, we’ll

have you build it into a separate Ctrl object to prevent cluttering your objects. Here

are the steps you’ll follow in this group of tasks:

■ Group 2—Capture user input.

– Step 1: Create a keyboard listener.

– Step 2: Add mouse control.

– Step 3: Add touch support.

– Step 4: Add control info via HTML.

First, you’ll create keyboard listeners for left- and right-arrow keys. Second, you’ll cre-

ate a mouse listener that monitors cursor movement and places the paddle there.

Third, you’ll add touch functionality for devices that support the W3C’s Touch Events

draft (http://www.w3.org/TR/2011/CR-touch-events-20111215/). When you’ve fin-

ished with the controls, we’ll give you a few tips on best practices for input techniques

that improve user experience.

Collision test to see
if a ball overlaps
the currently
drawn brick.

If the ball really is overlapping a brick, set it to
false and reverse the ball’s y-axis direction.

http://www.w3.org/TR/2011/CR-touch-events-20111215/

186 CHAPTER 6 2D Canvas: low-level, 2D graphics rendering

STEP 1: CREATE A KEYBOARD LISTENER

To detect keyboard events, you’ll need to modify the existing Ctrl object with meth-

ods to monitor up and down key presses shown in the next listing. Think of these as

switches for activating left or right paddle movement. Note that the listing’s

Ctrl.init() is called from Game.setup()to fire input monitoring.

var Ctrl = {
 init: function() {
 window.addEventListener('keydown', this.keyDown, true);
 window.addEventListener('keyup', this.keyUp, true);
 },

 keyDown: function(event) {
 switch(event.keyCode) {
 case 39:
 Ctrl.left = true;
 break;
 case 37:
 Ctrl.right = true;
 break;
 default:
 break;
 }
 },

 keyUp: function(event) {
 switch(event.keyCode) {
 case 39:
 Ctrl.left = false;
 break;
 case 37:
 Ctrl.right = false;
 break;
 default:
 break;
 }
 }
};

If you want to try it, refresh the page; you’ll see that the paddle won’t acknowledge

input commands. With Ctrl.left and Ctrl.right properties storing keyboard input,

your Paddle.move() needs to references those properties with the following snippet:

var Paddle = {
 move: function() {
 if (Ctrl.left && (this.x < Game.width - (this.w / 2))) {
 this.x += this.speed;
 } else if (Ctrl.right && this.x > -this.w / 2) {
 this.x += -this.speed;
 }
 }
};

Listing 6.12 game.js—Keyboard listeners

Core API

39 will monitor a player’s
left-arrow key.

37 will monitor a player’s
right-arrow key.

keyUp will reset Ctrl’s
keyboard monitoring
when a key is released.

187Breathing life into Canvas elements

STEP 2: ADD MOUSE CONTROL

Monitoring for mouse movement is similar to keyboard monitoring, except you need

to take into account the Canvas’s position on the page and cross-reference it with the

mouse. To get the current mouse location, update Ctrl.init() and add a new move-

Paddle() method with the following listing.

var Ctrl = {
 init: function() {
 window.addEventListener('keydown', this.keyDown, true);
 window.addEventListener('keyup', this.keyUp, true);
 window.addEventListener('mousemove', this. movePaddle, true);
 },

 movePaddle: function(event) {
 var mouseX = event.pageX;
 var canvasX = Game.canvas.offsetLeft;

 var paddleMid = Paddle.w / 2;

 if (mouseX > canvasX && mouseX < canvasX + Game.width) {
 var newX = mouseX - canvasX;
 newX -= paddleMid;

 Paddle.x = newX;
 }
 }
};

STEP 3: ADD TOUCH SUPPORT

Adding touch support to your game requires only six additional lines of code. What’s

even better is that you don’t have to modify your existing objects. Just drop the code

from the next listing into the Ctrl object and Boom!, touch support is added.

var Ctrl = {
 init: function() {
 window.addEventListener('keydown', this.keyDown, true);
 window.addEventListener('keyup', this.keyUp, true);
 window.addEventListener('mousemove', this.movePaddle, true);

 Game.canvas.addEventListener('touchstart', this.movePaddle, false);
 Game.canvas.addEventListener('touchmove', this.movePaddle, false);

More key codes!

If you’d like to know more about the state of keyboard detection and get a complete

list of key codes, please see Jan Wolter’s article “JavaScript Madness: Keyboard

Events” (http://unixpapa.com/js/key.html).

Listing 6.13 game.js—Mouse controls

Listing 6.14 game.js—Touch controls

X location of
the mouse.

Measurement from the
left side of the browser
window to the Canvas
element in pixels.

Offsets the paddle’s new
location so it lines up in
the middle of the mouse.Hijacks the existing

Paddle object and
replaces the x coordinate.

Core API

http://unixpapa.com/js/key.html

188 CHAPTER 6 2D Canvas: low-level, 2D graphics rendering

 Game.canvas.addEventListener('touchmove', this.stopTouchScroll,
 false);
 },

 stopTouchScroll: function(event) {
 event.preventDefault();
 }
};

NOTE If a device doesn’t support the touch events you created, don’t worry;
unsupported events will be ignored and the game will run normally. You can
try any mobile device, but we can’t guarantee it will work.

6.3.4 Control input considerations

In the past couple of years JavaScript keyboard support for applications and websites

has grown by leaps and bounds. YouTube, Gmail, and other popular applications use

keyboard shortcuts to increase user productivity. Although allowing users to speed up

interaction is great, it can quickly unravel into a usability nightmare.

 You need to be careful when declaring keyboard keys in JavaScript. You could over-

ride default browser shortcuts, remove OS functionality (copy, paste, and so on), and

even accidentally close the browser. The best way to avoid angering players is to stick

to arrow and letter keys. Specialty keys such as the spacebar can be used, but overrid-

ing Shift, the Mac/Windows key, and/or Caps Lock could have unforeseen repercus-

sions. If you must use a keyboard combination or specialty key, ask yourself, “Will

these controls be problematic for my users?”

 Application users don’t want to spend their first 10 minutes randomly smashing

keys and clicking everywhere. Put your game’s controls in an easy-to-find location and

use concise wording. For instance, placing the controls directly under a game is a

great way to help users.

STEP 4: ADD CONTROL INFO VIA HTML

To add a control description to Canvas Ricochet, add a simple <p> tag directly below

<canvas>. It should say, “LEFT and RIGHT arrow keys or MOUSE to move.” If you really

want, you could create a graphical illustration that’s easier to see, but for now you’ll

just use text for simplicity.

<canvas id="canvas" width="408" height="250">
 Your browser shall not pass! Download Google Chrome to view this.
</canvas>

<p>LEFT and RIGHT arrow keys or MOUSE to move</p>

<script type="text/javascript" src="game.js"></script>

Congratulations! You’ve just completed an HTML5 game from beginning to end. You

can now play a complete level of Canvas Ricochet without interruption. We know it’s

been a difficult journey to get this far, but why not take your game farther? With just a

Touch scrolling causes issues with
Canvas Ricochet, so you have to disable
touchmove’s default functionality.

189Polishing Canvas games

little more work, you can add progressive level enhancement and screens to make

your game shine.

6.4 Polishing Canvas games

Your game is technically complete, but it lacks the polish necessary to attract players.

Addictive elements such as scoreboards, increased difficulty levels, and an enjoyable

user experience are essential. They help to increase game revenue, maximize the

number of users, and, most important, keep people playing.

We’re going to skyrocket the usefulness of your Canvas Ricochet game by showing you

how to polish it to perfection in only four steps.

■ Step 1: Create a score and level counter.

■ Step 2: Store high scores online (optional).

■ Step 3: Create a Welcome screen.

■ Step 4: Create a Game Over screen.

After you add a point system and optional Facebook scoreboard for users, you’ll cre-

ate a dynamic leveling system with a few code modifications, so users play harder and

faster as their skills improve. Then, you’ll place the cherry on top of Canvas Ricochet

with opening and closing screens. Lastly, we’ll cover the current Canvas gaming

engines to help with writing your next game.

 First up is tracking score and levels.

6.4.1 Tracking score and levels

When we were about 10 years old (okay, maybe some of us were older!), we played

Breakout all the time. One of us played on the now-ancient Atari gaming system;

another played at Pizza Hut every Friday. We’d play over and over to keep raising our

scores. Back then, you could only compete with a local community; now, with social

media, it’s quite easy to put your game’s scoreboard online so people can compete on

a global scale. But before your users can post their high scores online, you’ll need to

tweak your game to record brick breaks.

In this section you’ll learn

■ How to implement and maintain a player’s score

■ How to integrate social score-sharing

■ How to avoid security issues in your apps

■ How to integrate a leveling system

■ How to create an introduction and Game Over screen

■ How to choose a Canvas game engine

190 CHAPTER 6 2D Canvas: low-level, 2D graphics rendering

STEP 1: CREATE A SCORE AND LEVEL COUNTER

Your heads-up display (HUD) requires that you create text with the Canvas API. Just

like CSS you have access to text align, vertical align (called text baseline), and @font-

face fonts. Be warned: You don’t have access to any letter-spacing properties, so your

text might end up looking a bit cramped.

WARNING Use vector fonts instead of bitmap for your Canvas applications.
According to the W3C Canvas Working Draft, “transformations would likely
make the font look very ugly.” What that means is that if you use a bitmap-
based font, your text will corrode in a macabre fashion when rotated.

The simplest way to create counters is to add a new Hud object below your Game object

and then run it through Game.init() and Game.draw(), which is what the next listing

does. Also note that including HUD’s startup logic in init will automatically reset it

when you integrate Game Over functionality later.

var Hud = {
 init: function() {
 this.lv = 1;
 this.score = 0;
 },

 draw: function() {
 ctx.font = '12px helvetica, arial';
 ctx.fillStyle = 'white';
 ctx.textAlign = 'left';
 ctx.fillText('Score: ' + this.score, 5, Game.height - 5);
 ctx.textAlign = 'right';
 ctx.fillText('Lv: ' + this.lv, Game.width - 5, Game.height - 5);
 }
};

var Game = {
 init: function() {
 Background.init();
 Hud.init();
 Bricks.init();
 Ball.init();
 Paddle.init();

 this.animate();
 },
 draw: function() {
 ctx.clearRect(0, 0, this.width, this.height);

 Background.draw();
 Bricks.draw();
 Paddle.draw();
 Hud.draw();
 Ball.draw();
 }
};

Listing 6.15 game.js—Score and level output

Core API

Specify text’s
display properties. Create

score
text.

Create level text.

191Polishing Canvas games

You need to increment the score counter every time a brick is hit. To do so, add logic

to increment Hud.score by modifying Bricks.collide() with the following listing.

Note that you already added the code to fire the level up earlier in a Brick.draw()

listing, so you don’t need to worry about that.

var Bricks = {
 collide: function(i, j) {
 Hud.score += 1;
 this.total += 1;
 this.count[i][j] = false;
 Ball.sy = -Ball.sy;
 }
};

Next, increment the ball’s speed in Ball.init() and multiply the number of bricks in

Bricks.init() with a level multiplier. A level multiplier is a technique that scales cer-

tain properties based on a player’s current level. Using the level multiplier in the fol-

lowing listing, you can change object properties when a level up occurs.

var Ball = {
 init: function() {
 this.x = 120;
 this.y = 120;
 this.sx = 1 + (0.4 * Hud.lv);
 this.sy = -1.5 - (0.4 * Hud.lv);
 }
};

var Bricks = {
 init: function() {
 this.row = 2 + Hud.lv;
 this.total = 0;

 this.count = [this.row];
 for (var i = this.row; i--;) {
 this.count[i] = [this.col];
 }
 }
};

When a level up occurs, everything except the Hud needs to be updated with a new

method called Game.levelUp(). Problem is, allowing players to level up past 5 will

cause your game’s bricks to take over the screen. To prevent brick overflow, you need

to add a Game.levelLimit() method and modify the Bricks.init() logic to use it.

Once you’ve inserted the code from the next listing, Canvas Ricochet can be played

with multiple levels.

Listing 6.16 game.js—Adjusting brick destruction

Listing 6.17 game.js—Ball and brick upgrades

Increments your score counter
after a brick is destroyed.

Increments brick count so
the game can figure out
when all the bricks are gone.

Core API

Makes ball’s speed relative
to the current level.

Number of brick rows now
relative to current level.

192 CHAPTER 6 2D Canvas: low-level, 2D graphics rendering

var Game = {
 levelUp: function() {
 Hud.lv += 1;
 Bricks.init();
 Ball.init();
 Paddle.init();
 },

 levelLimit: function(lv) {
 return lv > 5 ? 5 : lv;
 }
};

var Bricks = {
 init: function() {
 this.row = 2 + Game.levelLimit(Hud.lv);
 this.total = 0;

 this.count = [this.row];
 for (var i = this.row; i--;) {
 this.count[i] = [this.col];
 }
 }
};

STEP 2: STORE HIGH SCORES ONLINE (OPTIONAL)

With a live score counter, you can easily let users post their high scores. The easiest

way to do this is visit http://clay.io and check out their leaderboard documentation.

Listing 6.18 game.js—Game upgrades

Security, because cheaters are gonna cheat

Because your game is running in JavaScript, it’s quite easy for hackers to manipulate

high scores, lives, and other information. Many consider JavaScript’s security limita-

tions a huge problem for scoreboards and making income from in-game content.

If you absolutely need some security, a few options are available.

The most straightforward is to have a server handle all of the play data and run

checks before storing anything. The downside is it requires users to have an account

to cross-reference play data with heavy-duty servers.

A less-used option is to hide a security code in your JavaScript files that AJAX uses as

a handshake with the database to see if the current game is valid. Or you can use a

design pattern that emulates private properties/variables in JavaScript. Although these

two methods will work, they’ll only temporarily prevent users from hacking your game.

If you’re thinking that you’ll have to develop your game in Flash or Java because of

security issues, then please realize that these systems also have security flaws.

Anyway, it’s about how you program for security instead of the programming language

used to achieve it.

Level-up logic fired every
time the level increases.

Limits bricks growth
to five rows.

Only line changed in this
method so you prevent
bricks from overflowing
on the screen.

http://clay.io

193Polishing Canvas games

6.4.2 Adding opening and closing screens

When a user loads up your game, they must play

immediately or lose. In order to let the user begin

the game, create a Welcome screen (figure 6.9) that

starts on click via an event listener.

STEP 3: CREATE A WELCOME SCREEN

The first step to making a Welcome screen is adding

a new object called Screen (in the following listing)

right below your Game object. The screen needs a

background with a width and height large enough to

cover everything. It should say “CANVAS RICOCHET”

and “Click To Start.”

var Screen = {
 welcome: function() {
 this.text = 'CANVAS RICOCHET';
 this.textSub = 'Click To Start';
 this.textColor = 'white';

 this.create();
 },

 create: function() {
 ctx.fillStyle = 'black';
 ctx.fillRect(0, 0, Game.width, Game.height);

 ctx.fillStyle = this.textColor;
 ctx.textAlign = 'center';
 ctx.font = '40px helvetica, arial';
 ctx.fillText(this.text, Game.width / 2, Game.height / 2);

 ctx.fillStyle = '#999999';
 ctx.font = '20px helvetica, arial';
 ctx.fillText(this.textSub, Game.width / 2, Game.height / 2 + 30);
 }
};

Your Welcome screen needs a click event listener added into a new method called

Game.setup(). Also, Game.init() needs to be modified so it fires from the new screen

listener. In addition, with the next listing, you’ll make the listener reusable by adding

its logic into a new Game.runGame() method.

var Game = {
 init: function() {
 Background.init();
 Hud.init();

Listing 6.19 game.js—Creating the Welcome screen and listener

Listing 6.20 game.js—Creating the Welcome screen and new event listener

Figure 6.9 A simple Welcome

screen that initiates gameplay

through a click listener. All text and

coloring are created through Canvas.

Core API

Creation of screen’s
base values. Setup screen after

initial properties
have been set.

create() only outputs the set parameters so the
screen’s text can be adjusted as necessary.

Background.

Main text.

Subtext.

194 CHAPTER 6 2D Canvas: low-level, 2D graphics rendering

 Bricks.init();
 Ball.init();
 Paddle.init();
 },

 setup: function() {
 if (this.canvas.getContext){
 ctx = this.canvas.getContext('2d');

 this.width = this.canvas.width;
 this.height = this.canvas.height;

 Screen.welcome();
 this.canvas.addEventListener('click', this.runGame, false);
 Ctrl.init();
 }
 },

 runGame: function() {
 Game.canvas.removeEventListener('click', Game.runGame, false);
 Game.init();

 Game.animate();
 }
};

The next screen you’ll set up, the Game Over screen, is shown in figure 6.10.

STEP 4: CREATE A GAME OVER SCREEN

With a Welcome screen in place, users can seamlessly play until their ball disap-

pears. When the ball is gone, you’ll throw up a Game Over screen by adding a

Screen.gameover() method with the following snippet. You don’t need to call

Screen.gameover() in your code, because it was placed in Ball.draw().

var Screen = {
 gameover: function() {
 this.text = 'Game Over';
 this.textSub = 'Click To Retry';
 this.textColor = 'red';

 this.create();
 }
};

Adds the new
event listener.

Removes event
listener after firing.

Figure 6.10 Game Over screen

with a second chance at life.

Letting users easily try again

allows them to continue playing

without a page refresh.

195Polishing Canvas games

You also need to add code for another listener placed earlier called Game.restart-

Game(). On a click event, that listener fires to the following snippet to reset the game

to its initial setup state. You’ll need to add Game.restartGame() as a new method to

Game for it to work:

var Game = {
 restartGame: function() {
 Game.canvas.removeEventListener('click', Game.restartGame, false);
 Game.init();
 }
};

And that’s it! With that last snippet, your Canvas Ricochet application is complete. Try

it out, and then share it to amaze your family and friends.

6.4.3 Getting help from code libraries

By completing Canvas Ricochet, you’re now capable of coding games from scratch

in Canvas. It did take a while to code everything. To help save time and money on

projects, you might want to use a JavaScript library. For example, Impact.js would

let you write Canvas Ricochet in 100 lines or less (but then you wouldn’t have

learned how to use Canvas, either). You also need to consider that engines aren’t

optimized for your code and will often decrease a game’s speed performance. Cur-

rently most developers prefer ImpactJS, but there are other options you can find

out more about at http://html5gameengine.com/.

IMPACTJS

ImpactJS, or the Impact JavaScript Engine, is one of the fastest and most-effective

HTML5 libraries. It has documentation that’s rapidly growing and video tutorials to

get you moving. The only catch is that it costs $99 per license, which is kind of steep if

you just want to test it. Figure 6.11 shows a complex game created with this library.

Core API

Figure 6.11 Code libraries

like ImpactJS allow you to

create complex games in

significantly less time than

coding a game from scratch.

http://html5gameengine.com/

196 CHAPTER 6 2D Canvas: low-level, 2D graphics rendering

6.5 Summary

Canvas isn’t limited to a small box for video games; it’s useful for a multitude of pur-

poses and works well for websites. Thinking out of the box, you can create interactive

backgrounds, image-editing tools, and more. For instance, you could make a footer in

which users play a game of Canvas Ricochet, destroying footer elements once they’ve

initiated the game.

 Although you did play with many Canvas features, we’ve barely delved into its capa-

bilities. For instance, you could animate a small film, which will become more possible

as Canvas’s GUI tools become available. In the meantime, you can make pages react

to mouse position location or activate animation sequences based on mouse clicks

or hover.

2D Canvas games can be fun to make, but they aren’t exactly generating record sales.

In addition, most HTML5 Canvas game startups haven’t been successful. If in-browser

application developers wants to compete with native desktop applications (games and

anything else), better libraries and processing power are necessary. On the other

hand, Canvas-based 2D applications can be cheap to produce and widely accessible.

The only problem with these applications is that they don’t scale well to various screen

sizes without additional programming, although Canvas’s 3D context from WebGL

gives it the ability to do so. If you want a simple and effective way to scale 2D graphics

for any device’s size, you may want to consider SVG. It has an incredibly large set of

features and puts Canvas to shame for graphic creation. And we’re going to explore it

in more detail next.

Want to convert HTML5 games into mobile apps?

HTML5 apps should be written once and work on all devices, but it’s no secret that

mobile devices aren’t there yet. If you want to turn your HTML5 games into mobile

applications for Android, iOS, and other systems, check out appMobi.com and Phone-

Gap.com. They offer powerful conversion tools that give you access to all major

mobile devices. We’d love to walk you through creating a mobile app from Canvas

Ricochet, but it’s complicated enough that entire books are available on the subject.

Chapter 7 at a glance

Look for this icon throughout the chapter to quickly locate the topics outlined

in this table.

Topic Description, methods, and so on Page

Setting up SVG Overview of basic setup for using SVG

■ Vector vs. bitmap

■ <svg> configuration

■ CSS for SVG and DOM

200

204

205

SVG tags How to create shapes with the XML syntax

■ Basic shapes

■ Gradients and <g>
■ <text> and animation

■ XLink

■ Paths for advanced shapes

■ viewBox

206

207

208

208

209

211

JavaScript usage Advanced usage with JavaScript and SVG

■ XML namespacing

■ SVG libraries

■ Simple design pattern

■ Dynamically generating a large SVG group

■ Generating SVG paths via software

■ CSS for SVG animation

■ getBBox()

212

213

216

227

228

229

231

Canvas vs. SVG Using SVG vs. Canvas for projects

■ Community

■ Code comparison

■ DOM

232

233

233

Core API

